20220729 S4 Chemistry Extended Learning Activity Colorimetric determination of nitrite content in daily life sample

Group No:

Google Drive File Collection

https://drive.google.com/drive/folders/1HWg0EkYEjbZrLvfEEDF jK-jITcoxA0xE?usp=sharing

Grouping

	Group 1	Group 2	Group 3	Group 4	Group 5
Part A					
Part B					

Grouping List

Apparatus for each group

Items	Quantity	
Quartz vial	2	
50 ml beaker	4	
250 ml beaker	1	
Auto pipette (2-10 ml)	1, with 2 plastic tips	
Auto pipette (0.1-1 ml)	1, with 4 plastic tips	
Volumetric flask (100 ml)	1	
Volumetric flask (50 ml)	6	
dropper	4	
Plastic gloves	1 pair for each student	

Reagent provided

Part A – Constriction of calibration curve	Part B - Measurement of absorbance with daily life samples
Standard aqueous solution of sodium nitrite (NaNO ₂),	Authentic samples
with concentration of 1000 ppm. This is the <i>stock</i>	a. 1 kg of Choi Sum immersed into 2L of water for 20
<i>solution</i> (NaNO ₂)	minutes
[from supply table]	b. water from Sun Kei Fish Pond
Colouring reagent,	Colouring reagent
a mixture of H ₃ PO ₄ , sulfonamides, and N-(1-naphthy1)-	a mixture of H ₃ PO ₄ , sulfonamides, and N-(1-naphthy1)-ethylenediamine-
ethylenediamine-dihydrochloride	dihydrochloride
[from supply table]	[from supply table]

Part A – Construction of calibration curve

Procedures

- Pipette 1 ml of the stock solution into a 100 ml volumetric flask and add distilled water to the graduation mark. This is the Solution I. Concentration Solution I is _____ ppm
- 2. Prepare a series of *working standard solutions* with 50 ml volumetric flasks according to the table below:

	Blank	Standard	Standards	Standards	Standards
		solution A	solution B	solution C	solution D
Volume of	0	[ANS]	[ANS]	[ANS]	[ANS]
Solution I /ml		L	L	[[]
Volume of	Add distilled water until the graduation mark of 50 ml volumetric flask				
distilled water					
added		¥		р	
Concentration of	0				
the standard		[ANS]	[ANS]	[ANS]	[ANS]
formed / ppm					

 Add 2 ml of colour reagent into four working standards above and mix well. Leave them 10 minute for colour development.

Part A – Construction of calibration curve

Results

14		Part A: Preparation	n of calibration cu	irve	15
	Sample	2nd	3 rd	4 th	5 th
	76.	measurement	measurement	measurement	measurement
Vial in reference cartridge	Blank	Blank	Blank	Blank	Blank
Vial in sample cartridge	Blank	Standard solution A	Standards solution B	Standards solution C	Standards solution D
Absorbance	[ANS]	[ANS]	[ANS]	[ANS]	[ANS]

Part B - Measurement of absorbance with daily life samples

	Part B: Measurement of absorbance with daily life samples
	1 st measurement
Vial in reference cartridge	Blank
Vial in sample cartridge	Name of Sample: [ANS]
Absorbance	[ANS]

Based on the calibration curve, the concentration of nitrite ions in the sample was found to be [ANS]

Take a picture of your discussion result on this page

HKDSE Chemistry Extended Learning Activity / 2021-2022 S4

P. 7 of 7 -

Question to be discussed

1. Why is it necessary to construct a calibration curve if we want to determine the concentration of an <u>analyte</u> with colorimetric experiment?

2. If the absorbance of a sample is found to be higher than 1, what should be done to the procedure of the experiment?

Take a picture of your discussion result on this page

3. Suggest ONE assumption in this experiment.

 Suggest some advantages of using <u>colorimetry</u> over tradition test-tube scale experimental analysis, such as titration.

Some reminders during the procedure

- Handle the vials with great care. Your fingers should NOT touch the "smooth wall" of the vial.
- Rinse the vial with distilled water before you switch into a another solution. Whenever you need to dry the vials (both inside or outside), use *lens tissue*.
- Label the solutions clearly to avoid mixing up.
- Take pictures with iPad for important observation and the calibration curve